Abstract

Polyethyleneimines (PEIs) are used for transfection of cells with nucleic acids. Meanwhile, the interaction of PEI with mitochondria causes cytochrome c release prior to apoptosis; the mechanisms how PEI causes this permeabilization of mitochondrial membranes and the release of cytochrome c remain unclear. To clarify these mechanisms, we examined the effects of branched-type PEI and linear-type PEI, each of which was 25 kDa in size, on mitochondria. The permeabilization potency of mitochondrial membranes by branched PEI was stronger than that by linear PEI. The permeabilization by PEIs were insensitive to permeability-transition inhibitors, indicating that PEI-induced permeabilization was not attributed to permeability transition. Meanwhile, PEIs caused permeabilization of artificial lipid vesicles; again, the permeabilization potency of branched PEI was stronger than that of linear PEI. Such a difference in this potency was close to that in the case of isolated mitochondria, signifying that the PEI-induced permeabilization of mitochondrial membranes could be attributed to PEI's interaction with the phospholipid phase. Furthermore, this PEI-induced permeabilization of the lipid vesicles was observed only in the case of lipid vesicles including negatively charged phospholipids. These results indicate that PEIs interacted with negatively charged phospholipids in the mitochondrial membranes to directly lead to their permeabilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.