Abstract

Poly (lactic-co-glycolic acid) (PLGA) nanoparticles are widely-investigated vaccine adjuvants owing to their safety, antigen slow-release ability, and good adjuvants activity. This study involved the preparation of the polyethyleneimine-modified immunopotentiator Alhagi honey polysaccharide encapsulated PLGA nanoparticles (PEI-AHPP) and the assembly of the Pickering emulsion with PEI-AHPP as shell and squalene as core (PEI-PPAS). Furthermore, PEI-AHPP and PEI-PPAS were characterized. To assess the strength and type of immune responses induced by different adjuvants, the chickens were immunized with H9N2-absorbed nanoparticle formulations. Our results showed that since the PEI-PPAS possess rough strawberry-like surfaces, a large number of antigens can be absorbed on their surfaces through simple mixing. Compared to PEI-AHPP, PEI-PPAS was found to exhibit better stability and antigen-loading efficiency. The adjuvant activity of the nanoparticles showed PEI-PPAS/H9N2 to induce long-lasting and high Hemagglutination inhibition (HI) titers, high thymus, spleen, and organ index of the bursa of Fabricius. Moreover, the chickens immunized with PEI-PPAS/H9N2 showed a mixture of high CD4+ and CD8a+ T-cells in the spleen and strong Th1 and Th2-type cytokines secretion. Thus, these findings demonstrated PEI-PPAS to be a vaccine adjuvant inducing a mixed cellular and humoral immune response, which can potentially serve as an effective vaccine delivery adjuvant system for the H9N2 antigen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call