Abstract

The water soluble polyethyleneimine–copper(II) complexes, [Cu(phen)(L-tyr)BPEI]ClO4 (where phen=1,10-phenanthroline, L-tyr=L-tyrosine and BPEI=branched polyethyleneimine) with various degree of copper(II) complex units in the polymer chain were synthesized and characterized by elemental analysis and electronic, FT-IR, EPR spectroscopic techniques. The binding of these complexes with CT-DNA was studied using UV–visible absorption titration, thermal denaturation, emission, circular dichroism spectroscopy and cyclic voltammetric methods. The changes observed in the physicochemcial properties indicated that the binding between the polymer–copper complexes and DNA was mostly through electrostatic mode of binding. Among these complexes, the polymer–copper(II) complex with the highest degrees of copper(II) complex units (higher degrees of coordination) showed higher binding constant than those with lower copper(II) complex units (lower degrees of coordination) complexes. The complex with the highest number of metal centre bound strongly due to the cooperative binding effect. Therefore, anticancer study was carried out using this complex. The cytotoxic activity for this complex on MCF-7 breast cancer cell line was determined adopting MTT assay, acridine orange/ethidium bromide (AO/EB) staining and comet assay techniques, which revealed that the cells were committed to specific mode of cell death either apoptosis or necrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.