Abstract
We report polyethylene (PE)-water partitioning coefficients (K(PE)) for 17 parent-polycyclic aromatic hydrocarbons (PAHs), 22 alkylated-PAHs, 3 perdeuterated parent-PAHs, and 100 polychlorinated biphenyl (PCB) congeners or coeluting congener groups. The K(PE) values for compounds in the same homologue group are within 0.2 log units for alkylated-PAHs but span up to an order of magnitude for PCBs, due to the greater contribution of the position of the substituents (i.e., chlorines for PCBs and alkyl groups for alkylated-PAHs) to the molecular structure. The K(PE) values in deionized water for parent- and alkylated-PAHs show a good correlation with a regression model employing the number of aromatic carbons (C(AR)) and aliphatic carbons (C(AL)) in each compound: log K(PE) = -0.241 + 0.313 C(AR) + 0.461 C(AL). The regression model is useful for the assessment of freely dissolved aqueous concentrations of alkylated-PAHs, which comprise a significant fraction of the total in petroleum-derived PAHs and in some pyrogenic PAH mixtures. For PCBs, experimentally determined octanol-water partitioning coefficients are the best predictor of the K(PE) values among the molecular parameters studied. The effect of salinity up to 20 or 30 parts per thousand is found to be relatively insignificant on K(PE) values for PAHs or PCBs, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.