Abstract

Poly(ethylene terephthalate) (PET) taken from post-consumer soft-drink bottles was subjected to alkaline hydrolysis with aqueous sodium hydroxide after cutting it into small pieces (flakes). A phase transfer catalyst (trioctylmethylammonium bromide) was used in order the reaction to take place in atmospheric pressure and mild experimental conditions. Several different reaction kinetics parameters were studied, including temperature (70–95°C), NaOH concentration (5–15 wt.-%), PET average particle size, catalyst to PET ratio and PET concentration. The disodium terephthalate received was treated with sulfuric acid and terephthalic acid (TPA) of high purity was separated. The 1H NMR spectrum of the TPA revealed an about 2% admixture of isophthalic acid together with the pure 98% terephthalic acid. The purity of the TPA obtained was tested by determining its acidity and by polymerizing it with ethylene glycol using tetrabutyl titanate as catalyst. A simple theoretical model was developed to describe the hydrolysis rate. The apparent rate constant was inversely proportional to particle size and proportional to NaOH concentration and to the square root of the catalyst amount. The activation energy calculated was 83 kJ/mol. The method is very useful in recycling of PET bottles and other containers because nowadays, terephthalic acid is replacing dimethyl terephthalate (the traditional monomer) as the main monomer in the industrial production of PET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call