Abstract

Periprosthetic osteolysis is a dominant factor in the success or failure of total hip prostheses. Polyethylene wear debris has been implicated in the process of bone resorption and subsequent implant loosening. The present study is the first to examine the effect of ultra high molecular weight polyethylene (UHMWPE) wear debris produced by a hip simulator on calvarial bone resorption in vitro. (45)Ca release was measured in cultured mouse calvarial bone samples. Although short-term exposure to UHMWPE particles (2 h) decreased (45)Ca release, longer-term exposure for 1-2 days increased release in a dose-dependent manner. After one-day exposure to 7.5 x 10(6) particles per mL, 18% more (45)Ca was released from cultured calvarial bone than from control samples. It was concluded that UHMWPE wear particles either directly or indirectly stimulated osteoclasts to activate bone resorption. Polyethylene wear debris contributes to the osteolytic process at the bone-implant interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.