Abstract

The behavior of commercial poly(ethylene oxide)(PEO)–poly(propylene oxide)(PPO)–PEO triblock copolymers at the water/air interface and in microscopic foam films is studied. In aqueous solution these amphiphilic nonionic substances exhibit a surfactant-like aggregation and adsorption behavior. Even below the critical micelle concentration (cmc) the surface concentration is so high that the PEO chains are squeezed and protrude into the solution in order to accommodate to the situation at the interface. As evidenced by measurements of the ellipticity of light reflected from the free surface of the solution a PEO brush is created at the fluid interface. The microscopic foam film is used as a tool for investigating the normal interaction between two PEO brushes facing each other. Stable foam films are obtained at concentrations below the cmc and steric repulsion predominates (in 0.1 M NaCl). A brush-to-brush contact is established only at higher capillary pressures and the disjoining pressure isotherm follows de Gennes' scaling prediction. At lower pressure a softer steric repulsion occurs. It is governed by the bulk copolymer concentration and hence is fundamentally different from the brush-to-brush repellency. On the whole PEO–PPO–PEO copolymers behave as nonionic surfactants, but the large size of their molecules exemplifies the excluded-volume features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call