Abstract

Clay mineral vermiculite was treated with silver and copper nitrate solutions and samples were subsequently modified with organic compound (dodecylamine) via solid-solid melt intercalation. Prepared organo-inorgano vermiculites were used as nanofillers to the polyethylene matrix. Mixtures of polyethylene with vermiculite nanofillers, prepared by melt compounding technique, were pressed into thin plates. Structure changes of prepared powder vermiculite nanofillers and polyethylene/vermiculite composites were studied by X-ray diffraction analysis. The X-ray diffraction patterns of vermiculite nanofillers confirm intercalation of dodecylamine into the vermiculite interlayer. Antimicrobial properties of powder vermiculite nanofillers were evaluated by the minimum inhibitory concentration of samples which is needed to completely stop the bacterial growth and polyethylene/vermiculite composites were evaluated by the number of colony forming units survived on surfaces of composite plates. Different bacterial strains were studied: (1) Gram-positive, represented by bacteria Staphylococcus aureus and Enterococcus faecalis, (2) Gram-negative, represented by bacteria Escherichia coli and Pseudomonas aeruginosa, and (3) yeast, Candida albicans. Powder vermiculite nanofillers and surfaces of polyethylene/vermiculite composites showed good antimicrobial effect against tested bacteria and yeast. Powder vermiculite nanofillers show antimicrobial effect already after 30 minutes of tested time. Composite plates exhibited decrease of colony forming units number about 5-7 logarithmic orders depending on bacteria after 24 hours of tested time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call