Abstract
The topic of polymer nanocomposites remains an active area of research in terms of potential applications for dielectric materials. Although more than a decade has passed since these systems were first considered as dielectric materials, the precise effects of incorporating nanofillers into different polymers are yet to be confirmed. This paper reports on an investigation into the AC and DC breakdown behaviours of nanofilled polyethylene. A blend of low density and high density polyethylene was selected as the matrix while the chosen nanofiller was nanosilica; different nanofiller loading levels (2 wt%, 5 wt% and 10 wt%) and surface chemistries (untreated and silane treated) are discussed. The surface chemistry of the treated materials was characterised by Fourier transform infrared spectroscopy while the lamellar morphology and dispersion state of the final nanocomposites was determined by scanning electron microscopy (SEM). Breakdown results show that the introduction of 2 wt% or 5 wt% of nanosilica does not have a significant effect on the AC breakdown response and that this applies to both the untreated and treated nanosilica. In both cases, the AC breakdown strength was commensurate with that of the unfilled polyethylene. However, where severe clustering occurred, as evinced from SEM micrographs, the AC breakdown strength was found to be reduced significantly. Meanwhile, in DC breakdown testing, increasing the amount of untreated nanosilica was found to reduce the DC breakdown strength of the polyethylene. In contrast, surface treatment of nanosilica increased the DC breakdown strength compared with samples containing equivalent amount of untreated nanosilica.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.