Abstract

Microplastics cause varying degrees of damage to aquatic organisms. Exposure to microplastics contaminated water, the gills are among the first tissues, after the skin, to be affected by microplastics. As an essential immune organ, prolonged stimulation by microplastics disrupts immune function not only in the gills but throughout the body, yet the underlying mechanisms remain elusive. A model of gill injury from exposure to polyethylene (PE) microplastics was developed in this study. H&E staining revealed that polyethylene microplastics caused gill inflammation, vascular remodeling, and mucous cell proliferation. An increase in collagen indicates severe tissue damage. Additional analysis showed that polyethylene microplastics profoundly exacerbated oxidative stress in the gills. TUNEL assay demonstrated cell apoptosis induced by polyethylene microplastic. The mRNA levels were subsequently quantified using RT-PCR. The results showed that polyethylene microplastics increased the expression of the nuclear factor-κB (NF-κB) pathway (NF-κB p65, IKKα, IKKβ) and apoptosis biomarkers (p53, caspase-3, caspase-9, and Bax). Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasomes, which is an influential component of innate immunity, were overactive. What's more, the pro-inflammatory factors (TNF-α, IFN-γ, IL-2, IL-6, IL-8, IL-1β) that induce immune disorder also increased significantly, while the anti-inflammatory factors (IL-4, IL-10) decreased significantly. These results suggested that oxidative stress acted as an activation signal of apoptosis triggered by the NF-κB pathway and activating the NLRP3 inflammasome to promote inflammatory immune responses. The present study provided a different target for the prevention of toxin-induced gill injury under polyethylene microplastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.