Abstract

AbstractPolyolefins with periodic unsaturation in the backbone chain are sought after for synthesizing chemically recyclable polymers or telechelic polyolefin macromonomers. Here we introduce a bottom‐up synthesis of unsaturated high‐density polyethylene (HDPE) via copolymerization of ethylene with dimethyl 7‐oxabicyclo[2.2.1]hepta‐2,5‐diene‐3,5‐dicarboxylate followed by post‐polymerization retro‐Diels–Alder to unveil hidden double bonds in the polymer backbone. The incorporation of this “Trojan Horse” comonomer was varied and a series of unsaturated HDPE polymers with block lengths of 1.2, 1.9, and 3.5 kDa between double bonds was synthesized. Cross metathesis of unsaturated HDPE samples with 2‐hydroxyethyl acrylate yielded telechelic ester terminated PE macromonomers suitable for the preparation of ester‐linked PE. These materials were depolymerized and repolymerized, making them suitable candidates for chemical recycling. The ester‐linked PE displayed thermal and mechanical properties comparable to commercial HDPE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.