Abstract

Both octaglycidyletherpropyl polyhedral oligomeric silsesquioxane and hepta(3,3,3-trifluoropropyl)glycidyletherpropyl polyhedral oligomeric silsesquioxane were synthesized via the hydrosilylation reactions between octahydrosilsesquioxane [and/or hepta(3,3,3-trifluoropropyl)hydrosilsesquioxane] and allyl glycidyl ether. The polyhedral oligomeric silsesquioxane (POSS) macromers were characterized by means of Fourier transform infrared and nuclear magnetic resonance spectroscopy. The inter-component macromolecular reactions between the POSS macromers and poly(ethylene imine) (PEI) were employed to prepare the POSS-containing organic–inorganic PEI hybrids. The inclusion of octaglycidyletherpropyl POSS into PEI results in the formation of the organic–inorganic hybrid networks whereas the introducing hepta(3,3,3-trifluoropropyl)glycidyletherpropyl POSS to PEI affords the linear POSS-grafted PEI copolymers. Differential scanning calorimetry and thermogravimetric analysis show that the POSS-containing PEI hybrids displayed increased glass transition temperatures ( T g’s) and enhanced thermal stability compared to the plain PEI. These PEI hybrid composites can be significantly swollen with water without dissolving, suggesting the formation of hydrogels. The PEI hydrogels containing octaglycidyletherpropyl POSS is in reality the chemically-crosslinked hydrogels whereas the those containing hepta(3,3,3-trifluoropropyl)glycidyletherpropyl POSS displayed the behavior of physical hydrogels. The formation of physical hydrogels is ascribed to the microphase-separated morphology in the hybrids. In addition, the hybrids containing hepta(3,3,3-trifluoropropyl)glycidyletherpropyl POSS exhibited the typical amphiphilicity as evidenced by the increase in surface hydrophobilicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call