Abstract

Mesoporous polyethylene glycol (PEG)/silica and carbon black (CB)/silica xerogel composites were prepared by the sol-gel method as an adsorbent for CO2 adsorption. The CO2 adsorption process was carried out under pure CO2 atmosphere at room temperature in addition to ambient air. The xerogel composites with high surface area and pore volume showed better CO2 adsorption capacity than the pure silica xerogel. After modifying samples with propylene diamine using the wet impregnation method, an increase in CO2 adsorption capacity was observed for the samples except CB/silica xerogel composite. The highest CO2 adsorption capacity was determined as approximately 0.80 mmol/g for amine modified PEG/silica xerogel composite under pure CO2 exposure. According to the adsorption-desorption cyclic stability test, it was clear that the stable samples were obtained, which is a desirable property for all CO2 adsorbents. The promising findings revealed that the xerogel composites can be efficiently used as a CO2 adsorbent instead of conventional materials in many CO2 adsorption applications. Additionally, it can be expected that the xerogel composites can provide an effective adsorption process without high-cost, complexity, corrosion, and toxicity problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.