Abstract

Abstract The overall performance of alkoxysilanes as stone consolidants is constrained by stone mineralogy (particularly in the carbonate varieties) and by their tendency to crack during drying. In an attempt to overcome these problems, polyethylene glycol “chains” with two carboxylic acid end-groups (PEG-CA) were introduced in siloxane sols obtained by sol-gel chemistry using tetraethoxysilane (TEOS) as precursor. Different pre-condensation degrees (by varying the stirring times of sol-gel reaction: 10 min, 2, and 24 h) and PEG-CA chains with different molecular weights were studied as variables affecting the initial efficacy of the consolidants when applied into a limestone. The sol containing siloxanes with the lowest pre-condensation degree (10 min stirring) was quite susceptible to the carbonate media and thus a poor consolidation was achieved. The sol with the highest pre-condensation degree (24 h stirring) together with the PEG-CA chains with intermediate molecular weight produced significant and uniform strength gains along the stone depth. The consolidation also showed to be highly dependent on the molecular weight of the PEG-CA chains, the PEG-CA with highest molecular weight produced a non-uniform strength increase with potential harmful side effects. The results confirmed the role of carboxylic acid end-groups as efficient sol-gel catalysts and their ability to be incorporated into the silica matrix in the presence of carbonate stone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.