Abstract

Polyethylene glycol (PEG) is used to induce the self-assembly of phenol/formaldehyde (PF) resol and triblock copolymer Pluronic P123 by improving the interaction between the PF resol and P123, leading to the formation of a two-dimensional (2D) hexagonal ordered mesostructure. Ordered mesoporous polymers (OMPs) prepared by such a PEG-induced self-assembly method exhibit typical 2D hexagonal nanostructures with narrow pore size distribution. PEG may additionally act as a micropore-forming agent because of its thermal decomposition in this new synthetic approach, leading to the introduction of micropores into the polymeric framework. The resultant OMPs with rigid network frameworks can be directly transformed after a carbonization process into ordered mesoporous carbons. Furthermore, it is demonstrated that the as-obtained ordered mesoporous materials could have great potential applications as absorbents for organic vapors and electrodes in supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call