Abstract
Despite more than a century of research, spinal paralysis remains untreatable via biological means. A new understanding of spinal cord physiology and the introduction of membrane fusogens have provided new hope that a biological cure may soon become available. However, proof is needed from adequately powered animal studies. Two groups of rats (n=9, study group, n=6 controls) were submitted to complete transection of the dorsal cord at T10. The animals were randomized to receive either saline or polyethylene glycol (PEG) in situ. After 4weeks, the treated group had recovered ambulation vs none in the control group (BBB scores; P=.0145). One control died. All animals were studied with somatosensory-evoked potentials (SSEP) and diffusion tensor imaging (DTI). SSEP recovered postoperatively only in PEG-treated rats. At study end, DTI showed disappearance of the transection gap in the treated animals vs an enduring gap in controls (fractional anisotropy/FA at level: P=.0008). We show for the first time in an adequately powered study that the paralysis attendant to a complete transection of the spinal cord can be reversed. This opens the path to a severance-reapposition cure of spinal paralysis, in which the injured segment is excised and the two stumps approximated after vertebrectomy/diskectomies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.