Abstract

Breast cancer is a chronic disease that is characterized by an uncontrolled growth of abnormal cells from the breast tissue. It is one of the leading causes of mortality among women worldwide because of its early metastasis, aggressive behavior and resistance to the currently used anticancer drugs. Most of these drugs suffer from poor absorption and toxicity, and lack long-term efficaciousness because of drug resistance. Recently, polymeric thermosensitive hydrogels have emerged as excellent drug delivery systems for anticancer drugs with the potential to improve the overall therapeutic effect of the incorporated drug. In this current research, doxorubicin and curcumin were loaded into biodegradable PEG–gum acacia-based hydrogels. These hydrogels were pH-sensitive, biodegradable and non-toxic. The release mechanism of the drugs from the hydrogels was pH-dependent. In vitro cytotoxicity studies on MCF-7 cancer cell lines further confirmed that the incorporation of doxorubicin and curcumin into the hydrogels resulted in significant cytotoxic effect when compared to the free drugs, suggesting that these hydrogels are potential dual-drug delivery systems. The cytotoxic effect was dose- and time-dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.