Abstract

Biocompatible polymer-functionalized magnetic nanoparticles could offer promising applications in biomedical sciences. We fabricated polymer functionalized tri-manganese tetra oxide (Mn3O4) nanoparticles with the co-precipitation method and an octahedral crystal structure having a crystallite size of 10–17 nm was identified via XRD analyses. The SEM graph depicted the non-uniform and smooth surface of PEG-functionalized Mn3O4 NPs as compared to Mn3O4 and chitosan-coated Mn3O4 NPs. Elemental composition in the prepared sample was examined by EDX analysis. Various modes such as MnO, MnOH, OH, symmetric, and anti-symmetric of CH2 attached to the spectrum of Mn3O4 NPs were observed with FTIR analysis. The magnetization factor decreased and increase the coreacivity and retentivity of surface functionalized Mn3O4-NPs was calculated via VSM analysis. In-vitro bioassay, antibacterial activity was tested against Escherichiacoli, Bacillus cereus, and anti-fungal activities against two Fusarium strains indicated clear antimicrobial activities. The MTT assay to examine the anticancer activity against the MCF-7 cancer cell line was performed and the T1 MRI contrast agent demonstrated that PEG-coated Mn3O4 NPs exhibited anti-cancer activities. We propose that surface-functionalized magnetic NPs used for the treatment of cancer by using a remote controlled process of hyperthermia therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call