Abstract

Fast-charging lithium-ion batteries (LIBs) have recently received significant attention. In current commercial LIBs, lithium precipitation frequently occurs under long-term cycling and fast-charging conditions, adversely affecting their cycle capacity retention and safety. The primary cause of lithium precipitation is electrolyte loss during long-term cycling. In this study, a thermoplastic polyurethane/polyurethane acrylate semi-interpenetrating polymer network ceramic separator with high electrolyte retention (200%) and interfacial adhesion (6.6 N) is prepared and without a decrease in the energy density. The LiNi0.8Mn0.1Co0.1O2/graphite batteries fabricated with this separator show excellent electrochemistry properties (300 cycles, 1.5 C, discharge capacity of 3677 mAh, capacity retention of 93%). Furthermore, this study presents a novel strategy to mitigate the issue of lithium precipitation in fast-charging LIBs. Therefore, this functional separator is a promising alternative for the conventional commercial polyvinylidene difluoride separators and provides a new avenue for developing the next generation of fast-charging devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.