Abstract

Hydrophilic modification is a promising method to inhibit fouling formation on ultrafiltration membrane. In this work, different mass concentrations (1%–16%) of hydrophilic polyvinylpyrrolidone were incorporated into polyethersulfone (PES) membranes fabricated by none-solvent induced phase separation. Then, polydopamine (PDA) coating on the surface of prepared membrane was carried out at pH 8.5. The morphology and structure, surface hydrophilicity, permeation flux, BSA rejection, antifouling and stability performances of PES and PDA/PES modified membranes were investigated in detail. The results indicated that PDA was successfully attached onto the membranes. Membrane hydrophilicity was evaluated by water contact angle measurement. The contact angles of modified membranes reduced remarkably, suggesting that the membrane hydrophilicities were significantly increased. The results of filtration tests, which were done by dead-end filtration of bovine serum albumin solution, showed that the properties of permeability and fouling resistance were obviously improved by PDA modification. When polyvinylpyrrolidone mass content reached 10%, flux recovery ratio of modified membrane was up to 91.23%, and its BSA rejection were over 70%. The results of stability tests showed that the modified membranes had good mechanical stability and chemical stability. This facile fabrication procedure and outstanding performances suggested that the modified membranes had a potential in treating fouling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.