Abstract
The synthesis of 9-methylanthracenyl glycidyl ether (AnthGE) as a crosslinkable monomer that can be applied in anionic ring opening polymerization is reported. Diblock terpolymers of the composition methoxy-poly(ethylene oxide)-block-poly(2-ethylhexyl glycidyl ether-co-9-methylanthracenyl glycidyl ether) (mPEO-b-P(EHGE-co-AnthGE) with 10 to 24 wt% of AnthGE are synthesized and characterized. Their micellization behavior, as well as their light-induced core-crosslinking via irradiation with UV light (λ = 365nm) is studied. The results are compared with studies on the dimerization, and the dimer cleavage via irradiation with UV-C light (λ = 254nm), of the same diblock terpolymer in organic solution, and the small-molecule model compound 9-methoxymethylanthracene. Differences in 1 H NMR spectra of the crosslinked or dimerized compounds and reaction kinetics of the dimerization reactions under different conditions suggest possible side reactions for the case of the core-crosslinking of micelles in aqueous solution. These side reactions limit the reversibility of the anthracene dimerization reaction in aqueous solutions, even if the anthracene molecule is encapsulated within the hydrophobic core of a polymeric micelle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.