Abstract

Ring-opening copolymerizations of propylene oxide (PO) with cyclic acid anhydrides, succinic anhydride (SA), maleic anhydride (MA) and phthalic anhydride (PA) were carried out in the presence of a double metal cyanide (DMC) catalyst of molecular formula Zn2.3Cl1.0[Co(CN)6]1.0⋅2.0tBuOH⋅1.0H2O as a means of developing functional polyols bearing ester backbones. Uniform alternating copolymers are produced when [PO]/[anhydride] in the copolymer approaches unity. All resulting copolymers have moderate molecular weights (Mn = 2300–10,600) and a narrow polydispersity index (1.02–1.49). The apparent reactivity ratio of PO is 0.34, 0.28, and 0.26 for PO/SA, PO/MA, and PO/PA copolymerizations, respectively, assuming that the reactivity ratio of the anhydrides is zero. The DMC-catalyzed PO copolymerizations with anhydrides are an efficient way to produce polyester polyols, expanding the versatility of conventional polyols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.