Abstract

This work focused on the preparation and characterization of a novel amphiphilic block co-polymer and paclitaxel-loaded co-polymer nanoparticles (NPs) and in vitro evaluation of the release of paclitaxel and cytotoxicity of NPs. mPEG-b-P(OA-DLLA)-b-mPEG was prepared via melt polycondensation of methoxy poly(ethylene glycol) (mPEG), octadecanedioic acid (OA) and D,L-lactic acid (DLLA) and characterized by FT-IR, 1H-NMR, 13C-NMR, GPC, DSC and XRD. The paclitaxel-loaded mPEG-b-P(OA-DLLA)-b-mPEG NPs were prepared by nanoprecipitation and then characterized by LPSA, TEM and 1H-NMR. In vitro release behaviors of the paclitaxel-loaded NPs were investigated by HPLC. In vitro cytotoxicity of NPs was evaluated by MTT assay with normal mouse lung fibroblast cells (L929) as model cells. The composition of mPEG-b-P(OA-DLLA)-b-mPEG is consistent with that of the designed co-polymer. The paclitaxel-loaded NPs are of spherical shape with core/shell structure and size smaller than 300 nm. Paclitaxel can be continuously released from the paclitaxel-loaded NPs and the in vitro release rate of paclitaxel decreases with increasing the content of the P(OA-DLLA) segments in the co-polymer. The mPEG-b-P(OA-DLLA)-b-mPEG NPs are non-toxic to L929. The results suggest that mPEG-b-P(OA-DLLA)-b-mPEG NPs are a potential candidate carrier material for the controlled delivery of paclitaxel and other hydrophobic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.