Abstract

Polyene antibiotic administration is limited by dose-dependent nephrotoxicity. The latter is believed to be mediated by polyene anchoring to plasma membrane cholesterol, resulting in pore formation, abnormal ion/solute flux, adenosine triphosphate (ATP) declines, and, ultimately, a loss of tubule viability. The relative nephrotoxicity of these agents and their liposomal preparations has remained poorly defined. Thus, freshly isolated mouse proximal tubules or cultured human proximal tubule (HK-2) cells were exposed to either nystatin, amphotericin B, or three different polyene liposomal preparations (Nyotran, AmBisome, or Abelcet; 4 to 64 μg/mL). The impact of these agents on (1) plasma membrane injury (sodium-driven ATP consumption, assessed by ATP–adenosine diphosphate [ADP] ratios); (2) cellular susceptibility to superimposed injury (chemical hypoxia or ferrous ammonium sulfate–mediated oxidative stress; assessed by lactate dehydrogenase release); and (3) membrane cholesterol, phospholipid, and ceramide expression was assessed. Amphotericin B was more cytotoxic than nystatin (~25% to 50% greater ATP-ADP ratio declines). Most of this toxicity could be eliminated by polyene liposomal formulation. Nevertheless, the liposomal polyenes still fully sensitized tubule cells to superimposed chemical hypoxic (antimycin/deoxyglucose), but not oxidant, attack. Nystatin and amphotericin B caused acute increments in tubule sphingomyelin-phosphatidylcholine ratios and ceramide content (indicating an impact on the plasma membrane extending beyond the classic view of pore formation with ion flux). In conclusion, (1) nystatin is seemingly less cytotoxic than amphotericin B (in contrast to the prevailing clinical view); (2) liposomal formulation markedly decreases this cytotoxicity; (3) despite this reduced toxicity, liposomal polyenes are still able to render tubule cells more vulnerable to selected forms of superimposed injury; and (4) acute alterations in plasma membrane phospholipid and ceramide expression are previously unrecognized consequences and potential mediators of polyene-mediated tubular cell attack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.