Abstract
We study conformational and electrophoretic properties of polyelectrolytes (PEs) in tetravalent salt solutions under the action of electric fields by means of molecular dynamics simulations. Chain conformations are found to have a sensitive dependence on the salt concentration C(s). As C(s) is increased, the chains first shrink to a globular structure and subsequently re-expand above a critical concentration C(s)*. An external electric field can further alter the chain conformation. If the field strength E is larger than a critical value E*, the chains are elongated. E* is shown to be a function of C(s) by using two estimators E(I)* and E(II)* through the study of the polarization energy and the onset point of chain unfolding, respectively. The electrophoretic mobility of the chains depends strongly on C(s), and the magnitude increases significantly, accompanying the chain unfolding, when E>E(II)*. We study the condensed ion distributions modified by electric fields and discuss the connection of the modification with the change of chain morphology and mobility. Finally, E* is studied by varying the chain length N. The inflection point is used as a third estimator E(III)*. E(III)* scales as N(-0.63(4)) and N(-0.76(2)) at C(s) =0.0 and C(s)*, respectively. E(II)* follows a similar scaling law to E(III)* but a crossover appears at C(s) =C(s)* when N is small. The E(I)* estimator fails to predict the critical field, which is due to oversimplifying the critical polarization energy to the thermal energy. Our results provide valuable information to understand the electrokinetics of PE solutions at the molecular level and could be helpful in micro/nanofluidic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.