Abstract

We review recent experiments on the interaction of proteins with anionic polyelectrolytes in aqueous solution. Data from literature demonstrate that proteins can form soluble complexes even on the “wrong side” of the isoelectric point, that is, for pH values above the isoelectric point of the proteins under which the polyelectrolytes and the proteins are like-charged. All data published so far demonstrate that this type of adsorption becomes weaker with increasing ionic strength. A much stronger interaction is found if the polyelectrolyte chains are grafted onto solid surfaces to form polyelectrolyte brushes. Here it has been shown that spherical polyelectrolyte brushes consisting of a core of ca. 100 nm diameter and long attached polyelectrolyte chains strongly adsorb proteins at low ionic strength (“polyelectrolyte-mediated protein adsorption”; PMPA). Virtually no adsorption takes place onto the spherical polyelectrolyte brushes at high ionic strength. A critical comparison of data obtained on free polyelectrolytes and on polyelectrolyte brushes shows that both phenomena can be traced back to patches of positive charge on the surface of the proteins. Moreover, the PMPA may directly be related to the Donnan-pressure within the brush layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.