Abstract

Mixtures of carboxymethyl cellulose (CMC) or hydrophobically modified CMC with an oppositely charged surfactant (benzyldimethyltetradecylammonium chloride) in water were prepared. When the global polymer concentration is 0.18% by weight and the surfactant content is high enough, a precipitate with hexagonal order is formed. The precipitate composition shows practically constancy in its water content and a slight diminution in polymer concentration when the global surfactant content is varied between 0.9 and 23 wt%. The lattice parameter in this phase decreases when the polymer/surfactant ratio in the phase increases; this variation is faster with CMC than with the hydrophobically modified CMC. In this way electrostatic and hydrophobic interactions are far from being additive. From the extrapolation to infinite dilution, the global interaction seems to depend on the substitution degree in the polymer. Additionally, the comparison between the radius at the polar–apolar interface in the cylinders and the lattice parameter as a function of polymer/surfactant ratio in the hexagonal phase is compatible with some of the alkyl chains belonging to the hydrophobically modified CMC being present in the aqueous zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.