Abstract

Direct methanol fuel cells with high energy conversion efficiency and low hazard emissions have aroused great attention from both academic and industrial communities, but their large-scale commercial application has been blocked by high costs as well as short lifespan of the anode Pt catalysts. Here, we demonstrate a simple and scalable noncovalent strategy for the synthesis of quasi-one-dimensional (1D) Pt nanoworms grown on poly(diallyldimethyl-ammonium chloride) (PDDA)-functionalized Ti3C2Tx nanosheets as anode catalysts for methanol electrooxidation. Interestingly, the introduction of PDDA on Ti3C2Tx nanosheets can not only effectively adjust their surface charge property to strengthen the electrostatic interaction between metal and support but also induce the stereoassembly of worm-shaped Pt nanocrystals with abundant catalytically active grain boundaries, which enable the resulting hybrid to express high electrocatalytic activity, remarkable durability, and strong antipoisoning ability for methanol electrooxidation, which are better than those of the traditional Pt nanoparticle electrocatalysts loaded on carbon black, carbon nanotubes, reduced graphene oxide, and MXene matrixes. Theoretical simulations disclose that the more stable worm-shaped Pt configuration with an optimized electronic structure on the Ti3C2Tx surface possesses a weaker CO adsorption ability than that of the Pt nanoclusters, thereby providing a dramatically enhanced and sustainable electrocatalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.