Abstract

Spider dragline silk is a proteinaceous material that combines superior toughness and biocompatibility, which makes it a promising biomaterial. The distinct protein structure and the fiber formation process contribute to the superior toughness of dragline silk. Previously, we have produced recombinant spider silk-like proteins in transgenic tobacco that are readily purified from plant extracts. The plant-derived spidroin-like proteins consisted of native major ampullate spidroin 1 or spidroin 2 N- and C-termini flanking 8, 16, or 32 copies of their respective consensus block repeats (mini-spidroins). Here, we present the generation of fibers from mini-spidroins (rMaSp1R8 and rMaSp2R8) by polyelectrolyte complex formation using an anionic polyelectrolyte, gellan gum. Mini-spidroins, when treated with acetic acid and cross-linked by glutaraldehyde, formed a thin film at the interface when overlaid with a gellan gum solution. Immediate pulling of the film resulted in autofluorescent fibrous materials from either mini-spidroin alone or a combination of rMaSp1R8 and rMaSp2R8 (70:30). Addition of chitosan to the mini-spidroin solutions permitted continuous fiber production until the spinning dope supply was exhausted. When air-dried as-spun fibers were rehydrated and stretched in water, the fiber diameter decreased and the overall toughness improved. This study showed that spider silk-like fibers can be produced in large quantities through charge attraction that assembles chitosan, mini-spidroins, and gellan gum into fibrous complexes. We speculate that the spider silk self-assembly process in the duct may involve attraction of variously charged chitinous polymers, spidroins, and glycoproteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call