Abstract

We study the entry and transport of a polyelectrolyte, dextran sulfate (DS), through an asymmetric alpha-hemolysin protein channel inserted into a planar lipid bilayer. We compare the dynamics of the DS chains as they enter the channel at the opposite stem or vestibule sides. Experiments are performed at the single-molecule level by using an electrical method. The frequency of current blockades varies exponentially as a function of applied voltage. This frequency is smaller for the stem entrance than for the vestibule one, due to a smaller coupling with the electric field and a larger activation energy for entry. The value of the activation energy is quantitatively interpreted as an entropic effect of chain confinement. The translocation time decreases when the applied voltage increases and displays an exponential variation which is independent of the stem or vestibule sides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.