Abstract

Suspensions of insoluble polyelectrolyte complexes of dextran sulfate? (DS) of different molecular masses with lactoferrin (LF) have been fabricated and characterized. The encapsulation efficiency of LF and DS in a complex at pH 3.0 and 4.0 was assessed, and particles were characterized by their sizes and zeta-potential. The complexes formed at pH 3.0 differed by a higher stability level. The interaction with DS resulted in a twofold decrease in the antioxidant activity of LF, although the formation of complexes was not accompanied by conformational changes in LF molecules according to IR-spectrometry data. Microencapsulation was carried out by treating the suspensions with negatively charged LF-DS complexes with protamine and chitosane solutions with different molecular masses. The composition, size, and the zeta-potential of interaction products were assessed which allowed us to select the conditions for the preparation of pH-sensitive polyelectrolyte microparticles loaded with LF which would be able to gradually release glycoprotein under conditions that model the passage through the gastrointestinal tract of humans. These data indicate that this approach is promising for the creation of pH-sensitive biopolyelectrolytes suitable for oral administration of LF to target cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.