Abstract

The synthesis of some water-insoluble synthetic polyelectrolyte complexes formed between a weak polyanion and a strong polycation was followed. Sodium salts of poly(acrylic acid) and of some copolymers of acrylic acid with itaconic acid or maleic acid were used as anionic polymers. Cationic polyelectrolytes with quaternary ammonium salt groups in the main chain were used as strong polycations. The cationic polymers were different as concerns both the content of quaternary nitrogen atoms and the degree of branching. The complex formation was followed by the variation of the conductivity and of the specific viscosity of the reaction medium as well as by the turbidimetric titration versus the unit molar ratio polyanion/polycation. The deviation of the endpoint from stoichiometry was influenced mainly by the structure of the complementary polymers and by their molecular weights. The greater the structural differences, the higher the endpoint deviation from stoichiometry. Only insoluble polyelectrolyte complexes (PEC) were obtained in all the polyanion/polycation systems taken into account. The PECs were separated and characterized by elemental and spectral analyses as compared with the complementary polymers. © 1996 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call