Abstract

Amino poly(glycerol methacrylate)s (PGOHMAs) were synthesized from linear or star-shaped poly(glycidyl methacrylate)s (PGMA)s via ring opening reactions with 1,2-ethanediamine, 1,4-butanediamine and diethylenetriamine, respectively. The resulting cationic polymers were employed to form polyelectrolyte complexes (PECs) with insulin. Parameters influencing complex formation were investigated by dynamic light scattering (DLS). PECs in the size range of 100–200nm were obtained under optimal conditions, i.e., the pH value of PECs was 5.58–6.27, the concentration of NaCl was 0.02mol/L, and insulin–polymer weight ratio was 0.8. The insulin association efficiency (AE) of current system increased with zeta potentials of PECs. Circular dichroism (CD) analysis corroborated that the structure of insulin in the PEC nanoparticles was preserved after lyophilization. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) experiments demonstrated that weak physical interactions between insulin and amino PGOHMAs play an important role in the formation of PECs. The release of insulin depends on both structure and architecture of amino PGOHMAs. These PECs would be potentially useful for mucosal administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call