Abstract

Depositing of hierarchical ZnO nanostructures on electrospun nanofibers and their proper attachment has gained significant interest for myriad applications. However, the weak attachment of such nanostructures to the nanofiber surface limits their practical applications. In this study, a simple and efficient method has been developed for preparing hierarchical ZnO nanorod deposited polyurethane (PU) nanofiber by combining electrospinning, surface functionalization and hydrothermal treatment. Electrospun PU nanofibers were coated with polydopamine (Pdopa) via dip coating method. The resulting Pdopa coated PU nanofibrous mat was soaked in aqueous ZnO nanoparticles (ZnONPs) solution in order to seed the metal-oxide particles on its surface. Later, ZnO nanorods (ZNRs) were grown on the ZnO-seeded electrospun PU nanofiber via a hydrothermal process. X-ray photoelectron spectroscopy (XPS), Field-Emission Scanning electron microscopy (FE-SEM), X-ray diffraction pattern (XRD) and infra-red (IR) spectra indicated that ZnO nanorods firmly adhered to the functionalized PU nanofiber surface and had high photocatalytic/antimicrobial activity at the low-intensity UV-LED device with good reusability. The catechol group of Pdopa not only causes adhesion of ZnO nanostructures, but also act as an electron trap, preventing the recombination of e-h pairs and thereby improving the photocatalytic efficiency. We believe that the fabricated composite membrane with antifouling effect and photocatalytic activity is a potential candidate for organic pollutant degdration and wastewater purification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call