Abstract

The preparation of bio-based hydrogels with excellent mechanical properties, stable electrochemical properties, and self-adhesive properties remains a challenge. In this study, nano-polydopamine-reinforced hemicellulose-based hydrogels with typical multistage pore structures were prepared. The nanocomposite hydrogels exhibit stable mechanical properties and show no significant crushing phenomenon after 1000 cycles of cyclic compression. Its ultimate tensile strain was 101%, which is significantly higher than that of native skin. The shear adhesion strength of the hydrogel to skin tissue reaches 7.52 kPa, which is better than fibrin glue (Greenplast) (5 kPa), and the excellent adhesion property prolongs the service time of the hydrogel in biomedicine applications. The impedance of the hydrogel was reduced and the electrical conductivity was increased with the addition of nano-polydopamine. The prepared nanocomposite hydrogel can detect various body movements (even throat vibrations) in real time as a motion sensor while being able to rapidly load cationic drugs and facilitate transdermal introduction of electrically stimulated drug ions as a drug patch. It provides theoretical support for the fabrication of hemicellulose-based hydrogels with excellent properties through molecular design and nanoparticle reinforcement. This has important implications for the development of next-generation flexible materials suitable for health monitoring and self-administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.