Abstract
Despite increasing potentials as a skin regeneration template (DRT) to guide tissue healing, acellular dermal matrix (ADM) is still challenged by issues (like dense architecture, low cellular adhesion and poor vascularization), contributing to necrosis and shedding of upper transplanted skins. Modified with polydopamine (PDA), a novel and porous DRT capable of drug delivery was designed using porcine-derived ADM (PADMS) gels, termed PDA-PADMS. However, it was unclear whether it could efficiently deliver human acidic fibroblast growth factor (a-FGF) and regenerate skin defects. Herein, after being fabricated and optimized with PADMS gels in different ratios (1:6, 1:7, 1:8), PDA-PADMS loading a-FGF (PDA-PADMS-FGF) was evaluated by the morphology, physical& chemical properties, drug release and in-vitro biological evaluations, followed by full-thickness skin defects implanted with PDA-PADMS-FGF covered by transplanted skins. Apart from containing abundant collagen and elastin, porous PADMS (with a loose and uniform structure) was demonstrated to possess controlled release of a-FGF and biocompatibility attributed to PDA coating. Consistent with augmented cellular migration and proliferation in vitro, PDA-PADMS-FGF also accelerated wound healing and reduced scarring, improving collagen arrangement and neovascularization. In conclusion, PDA-PADMS-FGF has a good potential and application prospect as a matrix material for wound repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.