Abstract

It is an urgent need to develop environmentally friendly strategies with low energy consumption for gaseous formaldehyde (HCHO) purification. Herein, a sponge based MS/PDA/MnOx catalyst with plentiful 3D porosities was constructed. The dual-functional PDA layer not only promoted the MnOx loading (25 wt% MnOx in the composite), but also acted as a photothermal converter to absorb photo-irradiation to heat MnOx catalyst (~80 °C after 10 min irradiation). Moreover, the 3D network structure favored the mass transfer and effectively reduced the catalyst agglomeration to expose more active sites. As a result, the obtained MS/PDA/MnOx photothermocatalyst showed highly efficient performance for removal of HCHO within concentration of 40–320 ppm at room temperature under xenon light irradiation. This process followed a pseudo-second-order model, and the reaction rate of the MS/PDA/MnOx was 4.82 times of the MS/MnOx. Finally, a possible photothermocatalysis mechanism was proposed based on the intermediate examination via the in-situ DRIFTS investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call