Abstract
The clinical success of a titanium (Ti) percutaneous implant requires the integration with soft tissues to form a biological seal, which effectively combats marsupialization, premigration and infection after implantation. However, the bioinert surface of Ti or its alloys prevents the material from sufficient biological sealing and limits the application of Ti or its alloys as percutaneous implants. In this study, we achieved a collagen coating to bioactivate the surface of Ti-6Al-4V. In order to enable covalent functionalization, we first deposited a polydopamine (PDA) coating on Ti-6Al-4V based on dopamine self-polymerization and then immobilized collagen chains on PDA. Compared with physical absorption, such a chemical bonding method through mussel-inspired chemistry showed better stability of the coating. Meanwhile, the cellular tests in vitro indicated that collagen functionalization on the Ti-6Al-4V surface showed better adhesion of human foreskin fibroblasts (HFFs) and human immortal keratinocytes (HaCaTs). The subcutaneous implantation tests in rats indicated that the collagen modification attenuated soft tissue response and improved tissue compatibility compared with either pure Ti-6Al-4V or merely PDA coated samples. The facile bioinspired approach enables a persistent modification of metals by macromolecules under aqueous environments, and the PDA-collagen coated titanium alloy is worthy of further investigation as a percutaneous implant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.