Abstract

Aseptic loosening of total joint replacements (TJRs) continues to be the main cause of implant failures. The socioeconomic impact of surgical revisions is hugely significant; in the United Kingdom alone, it is estimated that £135m is spent annually on revision arthroplasties. Enhancing the longevity of titanium implants will help reduce the incidence and overall cost of failed devices. In realising the development of a superior titanium (Ti) technology, we took inspiration from the growing interest in reactive polydopamine thin films for biomaterial surface functionalisations. Adopting a “one-pot” approach, we exposed medical-grade titanium to a mildly alkaline solution of dopamine hydrochloride (DHC) supplemented with (3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), a phosphatase-resistant analogue of lysophosphatidic acid (LPA). Importantly, LPA and selected LPA analogues like FHBP synergistically cooperate with calcitriol to promote human osteoblast formation and maturation. Herein, we provide evidence that simply immersing Ti in aqueous solutions of DHC-FHBP afforded a surface that was superior to FHBP-Ti at enhancing osteoblast maturation. The facile step we have taken to modify Ti and the biological performance of the final surface finish are appealing properties that may attract the attention of implant manufacturers in the future.

Highlights

  • Titanium (Ti) is a widely used bone implant material

  • MG63 cells were seeded into the different PDA-modified wells, cultured for three days and an assessment of cell growth determined at the end of the incubation period

  • We consistently found modest, yet statistically significant, reductions in cell numbers for each of the PDA-functionalised tissue culture plastic (TCP) wells compared to untreated controls (Figure 1A)

Read more

Summary

Introduction

Titanium (Ti) is a widely used bone implant material. The popularity of Ti stems from its excellent biocompatibility, corrosion resistance and high modulus of elasticity in tension [1].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.