Abstract

Flexible health management systems integrating health monitoring and wound healing capabilities are highly desirable. Electronic skins (E-skins) based on conductive antibacterial hydrogels are an ideal platform for building flexible health management systems. Here, a multifunctional E-skin is designed based on a conductive, antibacterial, biocompatible, self-adhesive, and stretchable hydrogel (PPMAg). The PPMAg hydrogel is developed by combining a surface-modified MXene nanocomposite (PMAg) with a P(AM-co-SBMA) matrix. The PMAg nanocomposite is designed in a heterostructured configuration by depositing Ag nanoparticles on the polydopamine interface-modulated MXene nanosheets. The PPMAg-based E-skin, with a wide operating range, high sensitivity, good reproducibility, rapid responsiveness and resilience, can detect various human motions, facial expressions, and in vivo heartbeat signals. Moreover, the E-skin can also promote diabetic wound healing under electrical stimulation. Thus, this study indicates that the designed E-skin system has great potential to serve as a promising platform for the next generation flexible health management systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call