Abstract

Biomass-derived three-dimensional (3D) porous nanocarbons have attracted much attention due to their high surface area, permeability, electrical conductivity, and renewability, which are beneficial for various electronic applications, including energy storage. Cellulose, the most abundant and renewable carbohydrate polymer on earth, is a promising precursor to fabricate 3D porous nanocarbons by pyrolysis. However, the pyrolysis of cellulosic materials inevitably causes drastic carbon loss and volume shrinkage. Thus, polydopamine doping prior to the pyrolysis of cellulose nanofiber paper is proposed to fabricate the 3D porous nanocarbons with improved yield and volume retention. Our results show that a small amount of polydopamine (4.3 wt%) improves carbon yield and volume retention after pyrolysis at 700 °C from 16.8 to 26.4% and 15.0 to 19.6%, respectively. The pyrolyzed polydopamine-doped cellulose nanofiber paper has a larger specific surface area and electrical conductivity than cellulose nanofiber paper that without polydopamine. Owing to these features, it also affords a good specific capacitance up to 200 F g−1 as a supercapacitor electrode, which is higher than the recently reported cellulose-derived nanocarbons. This method provides a pathway for the effective fabrication of high-performance cellulose-derived 3D porous nanocarbons.

Highlights

  • Polydopamine.,the black-colored aqueous dispersion of the polydopamine-doped cellulose nanofibers the black-colored aqueous dispersion of the polydopamine-doped cellulose nanofiberswas dewatered by suction filtration andand solvent exchange, andand the the samples were thenthen freeze was dewatered by suction filtration solvent exchange, samples were dried. dried

  • We have demonstrated that the polydopamine doping and pyrolysis of cellulose nanofiber paper can be a promising method that can be used to fabricate the 3D porous nanocarbons with improved carbon yield and volume retention

  • The specific capacitance of the polydopamine-doped cellulose nanofiber paper was superior to the cellulose-derived nanocarbons that have been reported previously

Read more

Summary

Introduction

3D porous nanocarbons have been actively investigated for energy storage applications [3,4,5], including supercapacitors [6,7] and batteries [8,9,10]. The majority of carbon-based materials have been conventionally fabricated using petroleum-based precursors [11]. Carbon nanofibers have been produced from polyacrylonitrile, pitches, and phenolic resins [12], while commercial carbon fibers, including carbon nanofibers, are produced from petroleum-based precursors only [13], more than 96% of commercial carbon fibers are made from polyacrylonitrile [13,14]. Renewable biomass-derived 3D porous nanocarbons have been actively developed [17,18,19,20]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.