Abstract

Dopamine was self-polymerized onto the surface of a glassy carbon electrode (GCE), and the obtained polydopamine (PDOA) functioned as a scaffold for the grafting of half-polyamidoamine (H-PAMAM) dendrimers, which is a new class of polymeric biomaterial as drug carriers. Aspirin was chosen as the model drug and loaded into the H-PAMAM dendrimers via ion pairing, hydrogen bonding and hydrophobic interaction. The synthesis of H-PAMAM dendrimers grafted PDOA was characterized by electrochemical impedance spectroscopy (EIS), attenuated total reflection infrared spectroscopy (ATR-IR), atomic force microscopy (AFM), transmission electron microscopy (TEM), UV-visible spectroscopy and water contact measurement. The process of aspirin loading and delivery was also monitored by EIS. The results demonstrate that PDOA films can be used as an excellent platform for grafting of H-PAMAM dendrimers, which is an ideal carrier for drug loading and delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.