Abstract
Viral pneumonia (VP) is a serious health risk to humans, however, there is still a lack of specific treatments for VP. The spread of the virus in the body induces an excessive inflammatory response that can cause chronic or irreversible damage to lungs. Hence, VP treatment requires rapid clearance of the virus and sustained inflammation control. In this study, an innovative mesoporous silica medication delivery system co-loaded with Ziyuglycoside I(ZgI) and Oseltamivirv(OST) in fast and slow monomeric forms ZgI@MSNs-OST@ Polydopamine (PDA) was prepared for targeted treatment of VP. The prepared ZgI@MSNs-OST@PDA nanoparticles had a homogeneous and membrane-encapsulated spherical structure, with an average particle size of approximately 760 nm. in vitro release and in vivo pharmacokinetic studies demonstrated that ZgI@MSNs-OST@PDA achieved immediate release of OST and sustained release of ZgI, which was readily taken up by the cells. In vitro anti-H1N1 virus experiments showed that nanoparticles rapidly killed the virus in host cells, and the anti-inflammatory effect was sustained and long-lasting, providing excellent protection to host cells. In vivo antiviral pneumonia experiments confirmed the rapid clearance of influenza viruses from mouse lungs and the effective control of overactivated immune responses by ZgI@MSNs-OST@PDA nanoparticles. Through a mechanistic study, we found that the treatment of viral pneumonia with nanoparticles was associated with inhibition of the NLRP3 inflammasome pathway. In conclusion, the constructed nanoparticles achieved synergistic therapeutic effects of ZgI and OST on VP, that is, rapid killing of influenza viruses by OST and effective control of the virus-induced hyperinflammatory response by ZgI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.