Abstract

Ischemic stroke is a devastating disease and one of the leading causes of mortality worldwide. Overproduction of reactive oxygen species and inflammatory response contribute to secondary damage following ischemic insult. Nanozymes with robust anti-oxidative stress properties possess therapeutic possibility for ischemic insult. However, insufficiency of nanozyme accumulation in the neuronal mitochondria hindered their application. Herein, we constructed polydopamine-coated Prussian blue nanoparticles (PB@PDA NPs) to realize the targeting neuronal mitochondria for ischemic stroke, with the properties of antioxidant and anti-inflammation. After administration, much higher accumulation of PB@PDA NPs in the brain was observed compared to that in the PB NP group. Moreover, PB@PDA NPs effectively attenuated brain infarct than that of PB NPs in neonatal mice following hypoxia-ischemia (HI) insult. PB@PDA NPs mainly colocated with neuronal mitochondria invivo and invitro. Apart from attenuating oxidative stress, PB@PDA NPs also suppressed neuronal apoptosis and counteracted inflammation, which effectively promote a short- and long-term functional recovery in HI mice. Further, the therapeutic efficacy of PB@PDA NPs was also found in adult ischemic mice via tail vein injection. Collectively, these findings illustrate that PB@PDA NPs via system injection accumulate in neuronal mitochondria and are beneficial for ischemic stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.