Abstract

In order to achieve the purpose of targeting treatment of osteosarcoma, we developed novel paclitaxel (PTX) nanoparticles (Nps) coated with polydopamine (PDA) and grafted by alendronate (ALN) as ligand. Dopamine can be easily polymerized on various surfaces to form a thin PDA film in alkaline environment, which provided a versatile platform to perform secondary reactions for compounds without functional groups. The targeting Nps had a mean particle size of 290.6 ± 2.2 nm and a zeta potential of −13.4 ± 2.7. It was stable in phosphate buffer saline (PBS, pH 7.4), 5% glucose, plasma and displayed sustained drug release behavior. In vitro assay demonstrated the targeting Nps had stronger cytotoxicity against K7M2 wt osteosarcoma cells than the non-targeting Nps. Furthermore, in vivo distribution study indicated they could accumulate much more in tumor than non-targeting Nps. This is consistent with the in vivo antitumor study, targeting Nps achieved a better therapeutic effect than Taxol (8 mg kg−1, i.v.) (71.85% versus 66.53%) and prominently decreased the side effects of PTX. In general, the PTX-PDA-ALN-Nps may offer a feasible and effective strategy for osteosarcoma targeted therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.