Abstract
The objective of this research was to optimize the processing parameters for poly(D,L-lactide-co-glycolide) (PLGA) microspheres of 5-fluorouracil (5-FU) and to mathematically relate the process parameters and properties of microspheres. Microspheres were prepared by a water-in-oil-in-water emulsion solvent evaporation technique. A 3(2) factorial design was employed to study the effect of the volume of the internal phase of the primary emulsion and the volume of the external phase of the secondary emulsion on yield, particle size, and encapsulation efficiency of microspheres. An increase in the volume of the internal phase of the primary emulsion resulted in a decrease in yield and encapsulation efficiency and an increase in particle size of microspheres. When the volume of the external phase of the secondary emulsion was increased, a decrease in yield, particle size, and encapsulation efficiency was observed. Microspheres with good batch-to-batch reproducibility could be produced. Scanning electron microscopic study indicated that microspheres existed as aggregates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.