Abstract

Kinetics of inactivation of horseradish peroxidase (HP) induced by low-frequency ultrasonic (US) treatment (27 kHz) with the specific power of 60 W/cm2 were studied in phosphate (pH 7.4) and acetate (pH 5.2) buffers within the temperature range of 36.0 to 50.0 degrees C and characterized by effective first-order rate constants of US inactivation k(in)(us) in min(-1). Values of k(in)(us) depend on the specific ultrasonic power within the range of 20-60 W/cm2, on the concentration of HP, and on pH and temperature of the solutions. The activation energy of US inactivation of HP is 9.4 kcal/mole. Scavengers of HO* radicals, mannitol and dimethylformamide, significantly inhibit the US inactivation of HP at 36.0 degrees C, whereas micromolar concentrations of polydisulfide of gallic acid (poly(DSG)) and of poly(2-aminodisulfide-4-nitrophenol) (poly(ADSNP)) virtually completely suppress the US inactivation of peroxidase at the ultrasonic power of 60 W/cm2 on the sonication of the enzyme solutions for more than 1 h at pH 5.2. Various complexes of poly(DSG) with human serum albumin effectively protect HP against the US inactivation in phosphate buffer (pH 7.4). The findings unambiguously confirm a free radical mechanism of the US inactivation of HP in aqueous solutions. Polydisulfides of substituted phenols are very effective protectors of peroxidase against inactivation caused by US cavitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call