Abstract

The hypergrafting strategy designates the synthesis of hyperbranched graft copolymers (HGCs) in a grafting-from approach, using ABm monomers, from multifunctional, polydisperse macroinitiator cores by slow monomer addition. Hypergrafting leads to complex polymer topologies with defined molecular weight, degree of branching (DB), and polydispersity (PD). By a generating function formalism, a generally applicable equation for the PD of HGCs (PD = PDf + (m – 1)/f) is derived, where PDf is the polydispersity of the core and f its average functionality. In addition, the complete molecular weight distribution function has been calculated for varied m and f as well as for a given distribution of initiator functionalities f. For comparison of the theoretical predictions with experimental results, a series of novel linear polyglycerol-graft-hyperbranched polyglycerol (linPG-g-hbPG) HGCs (Mn = 1000–4000 g mol–1) were synthesized and characterized as a model system. An increase in polydispersity occurred as a con...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call