Abstract

Polydimethylsiloxane (PDMS) nanocomposite (NC) macroporous films were prepared by a Pickering high internal phase emulsion (HIPE) templating technique and used as effective dielectrics for enhancing the performance of triboelectric-nanogenerators (TENGs). HIPEs were formulated using commercial PDMS and water as the continuous and dispersed phase, respectively. The formation and solidification of PDMS-based HIPEs were possible through stabilization with silver-nanoparticles (Ag-Nps) and surfactant (Span 20) mixtures. The resulting PDMS-NC-polyHIPE films presented an interconnected 3D macroporous structure with Ag-Nps on their porous surface. The addition of different amounts of Ag-Nps (0, 4, 20, 28, 36 wt%) in HIPE formulations allowed modification of the pore size, total pore volume and dielectric properties of the tribo-materials. Results revealed that both the porosity and dielectric properties of these materials play an important role in enhancing the output performance of TENGs. Thus, the best TENG based on the PDMS-NC-polyHIPE film was achieved with 20 wt% of Ag-Nps, with voltage, current and power values of 4.88 V, 0.433 μA and 2.1 μW, respectively, which gives over 3.28-fold power enhancement compared with the reference TENG (based on a PDMS film without porosity or Ag-Nps). Therefore, the preparation of tribo-materials through a Pickering HIPE templating technique provides a novel, effective and easy way for the improvement of the TENG's performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.