Abstract

AbstractThe effect of phase‐pure cristobalite (a high temperature crystalline polymorph of silica) on the adhesive characteristics of hydroxyl terminated polydimethylsiloxane (PDMS) was studied. The potential advantages of PDMS/cristobalite composite system as an adhesive for aerospace applications are also discussed. A PDMS/cristobalite composite adhesive system containing different filler contents (0–46 volume percentage, vol%) was prepared. The filler material, phase‐pure cristobalite, was synthesized by the pyrolysis of fused silica at 1400°C. The mechanical, rheological, and thermal characteristics of the composites were studied. A high yield stress (0.151 Pa), shear‐thinning index (1.051), and fast recovery rate were observed for ∼34 vol% cristobalite loading, which indicate that PDMS retains its excellent adhesive and flow characteristics even at high filler loading with enhanced mechanical characteristics. Thermal analysis shows the onset of degradation of PDMS shifts to higher temperatures, 372–438°C and 317–417°C in nitrogen and air atmosphere respectively, which shows excellent thermal stability. The residual component yields after thermal degradation of PDMS/cristobalite composite system in nitrogen and air atmosphere show different degradation mechanisms. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.